Pengembangan Metodologi Prakiraan Beban Listrik Sektoral Secara Mikrospasial

Main Article Content

Adri Senen

Abstract

Prakiraan kebutuhan beban listrik merupakan langkah penting dalam perencanaan pengembangan ketenagalistrikan yang dijabarkan dalam pola antisipasi untuk memenuhi kebutuhan energi listrik hingga jangka waktu tertentu. Metoda prakiraan beban sektoral saat ini lebih sederhana dan mudah untuk diimplementasikan, namun keakuratannya akan cenderung bias pada wilayah yang memiliki keterbatasan data dan area pelayanannya dinamis. Di samping itu hasil prakiraannya masih bersifat makro, sehingga tidak memperlihatkan pusat-pusat beban pada wilayah yang lebih kecil (grid) dan mengakibatkan lokasi gardu distribusi tidak dapat ditentukan dengan pasti. Dengan menggunakan metoda prakiraan beban sektoral secara mikrospasial akan menjadikan area yang diprediksi akan semakin banyak karena area berbentuk grid – grid, maka diperlukan pengelompokan grid (kelurahan) menggunakan teknik clustering untuk membuat similarity matrix yang memuat tingkat kemiripan antar data yang dikelompokkan. Clustering yang dilakukan melibatkan banyak faktor (multivariate)  yakni faktor geografi, demografi, sosio ekonomi dan beban kelistrikan per sektor. Hasil setiap cluster mempunyai karakteristik wilayah yang berbeda yang kemudian diproyeksikan pertumbuhan bebannya sehingga hasil prakiraan yang lebih teliti. Penelitian ini dilakukan di wilayah PT PLN (Persero) Area Tangerang. Dengan menggunakan metode mikrospasial didapatkan clusterisasi untuk pertumbuhan beban di PT PLN (Persero) area Tangerang sebanyak  5 cluster dari 114 kelurahan

Downloads

Download data is not yet available.

Article Details

How to Cite
Senen, A. (2020). Pengembangan Metodologi Prakiraan Beban Listrik Sektoral Secara Mikrospasial. KILAT, 9(2), 234 - 243. https://doi.org/10.33322/kilat.v9i2.1016
Section
Articles

References

[1] J. Jiménez, A. Pertuz, C. Quintero and J. Montaña, "Multivariate Statistical Analysis based Methodology for Long-Term Demand Forecasting," in IEEE Latin America Transactions, vol. 17, no. 01, pp. 93-101, January 2019.
[2] N. Avazov, J. Liu and B. Khoussainov, "Periodic Neural Networks for Multivariate Time Series Analysis and Forecasting," 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 2019, pp. 1-8.
[3] Q. Fu, R. Lai, Y. Shan and X. Geng, "A Spatial Forecasting Method for Photovoltaic Power Generation Combined of Improved Similar Historical Days and Dynamic Weights Allocation," 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, 2018, pp. 1195-1198.
[4] P.Kobylinski, M.Wierzbowski, K.Piotrowski, “High-resolution net load forecasting for micro-neighbourhoods with high penetration of renewable energy sources”, International Journal of Electrical Power & Energy Systems, Elsevier, 2019
[5] JP Carvallo, PH Larsen, AH Sanstad, CA Goldman, "Load Forecasting in Electric Utility Integrated Resource Planning," osti.gov 6, 2017.
[6] X. Sun, Z. Ouyang and D. Yue, "Short-Term Load Forecasting Based on Multivariate Linear Regression," IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing,pp 1 -5, 2017
[7] Shahzadeh, Abbas & Khosravi, Abbas & Nahavandi, Saeid, “Improving load forecast accuracy by clustering consumers using smart meter a”. 1-7. 10.1109/IJCNN. 7280393, 2015
[8] Laurinec, Peter & Lucka, Maria. “New clustering-based forecasting method for disaggregated end-consumer electricity load using smart grid data”. 210-215. 10.1109/INFORMATICS.8327248. 2017
[9] Krzysztof Gajowniczek, Tomasz Ząbkowski, “ Simulation Study on Clustering Approaches For Short-Term Electricity Forecasting”, Complexity, Complex Optimization and Simulation in Power System, Volume 2018
[10] Raza, Muhammad Qamar & Nadarajah, Mithulananthan & Li, Jiaming & Lee, Kwang, "Multivariate Ensemble Forecast Framework for Demand Prediction of Anomalous Days”. IEEE Transactions on Sustainable Energy, p. 6, 2018
[11] Jianwei Mi, Libin Fan, Xuechao Duan , and Yuanying Qiu, “Short-Term Power Load Forecasting Method Based on”, Hindawi, Mathematical Problems in Engineering, Volume 2018
[12] Mujiati Dwi Kartikasari and Arif Rohmad Prayogio. “Demand Forecasting of Electricity in Indonesia with Limited Historical”, J. Phys.: Conf Data, 2018
[13] Babcock, Chad & Matney, Jason & Finley, Andrew & Weiskittel, Aaron & Cook, Bruce. Multivariate Spatial Regression Models for Predicting Individual Tree Structure Variables Using LiDAR Data. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. 6. 6-14. 10.1109/JSTARS.2012.2215582, 2013
[14] W Kong, Z Dong, Y Jia, “ Short – Term Residential Load Forecasting Based on LSTM Recurrent Neural Network”, IEEE Transactions on Smart Grid 10(1) 841-851, 2019
[15] S Humeau, T Wijaya, M Vasirani, “Electricity Load Forecasting For Residential Customer : Exploiting Aggregation and Correlation Between Households”, 2013 Sustainable Internet and ICT for Sustainability, 2013

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.