Perbandingan Data Hasil Metode B&W dan GWC untuk Klasifikasi Slagging Abu Batu Bara LRC

Main Article Content

Denny Murdany Muchsin

Abstract

Slagging classification is generally listed in coal COA in coal trading transactions using one of the methods of determining slagging classification so that coal is ensured boiler friendly (low/medium classification). The paper aims to prove the tendency of two methods of determining slagging classification (B&W and GWC) on the results of certain classifications in LRC coal. The research method uses a quantitative method by collecting LRC coal COA data on a coal-fired steam power plant for a year of coal receipt (81 lots) issued by a laboratory that has been accredited by KAN (National Accreditation Committee). According to the method of GWC, ashes of entire lots are classified as  LRC ash. While the method of B&W, there are 62 lots of ash classified as lignitic ash and 19 lots of ash classified as bituminous ash. This research has shown that the GWC method shows 79 lots of ash (97.53%) has low and medium classification and 2 lots of ash (2.47%) have a high classification; the method from B&W shows 19 lots of ash (23.46%) has a low classification and 62 lots of ash (76.54%) has a severe classification.

Downloads

Download data is not yet available.

Article Details

How to Cite
Muchsin, D. M. (2021). Perbandingan Data Hasil Metode B&W dan GWC untuk Klasifikasi Slagging Abu Batu Bara LRC. KILAT, 10(1), 128–137. https://doi.org/10.33322/kilat.v10i1.1176
Section
Articles

References

[1] PT PLN (Persero), Rencana Usaha Penyediaan Tenaga Listrik PT PLN (Persero) 2019-2028, Jakarta: PT PLN (Persero), 2019.
[2] PT PLN (Persero), Laporan Keuangan Konsolidasian Untuk Tahun-tahun yang Berakhir pada Tanggal 31 Desember 2017 dan 2016, Jakarta: PT PLN (Persero), 2018.
[3] PT PLN (Persero), Laporan Keuangan Konsolidasian Untuk Tahun-tahun yang Berakhir pada Tanggal 31 Desember 2018 dan 2017, Jakarta: PT PLN (Persero), 2019.
[4] PT PLN (Persero), Laporan Keuangan Konsolidasian Untuk Tahun-tahun yang Berakhir pada Tanggal 31 Desember 2019, 2018, dan 2017, Jakarta: PT PLN (Persero), 2020.
[5] S. Balakrishnan, R. Nagarajan and K. Karthick, "Mechanistic modeling, numerical simulation and validation of slag-layer growth in a coal-fired boiler," Energy, vol. 81, pp. 462-470, 3 2015.
[6] W. J. Shi, L. X. Kong, J. Bai, J. Xu, W. C. Li, Z. Q. Bai and W. Li, Effect of CaO/Fe2O3 on fusion behaviors of coal ash at high temperatures, vol. 181, 2018.
[7] N. J. Sophia and H. Hasini, "Investigation on Coal Slagging Characteristics and Combustion Behaviour in Furnace," in MATEC Web of Conference, Malaysia, 2017.
[8] The Babcock & Wilcox Company, Steam/ Its Generation and Use, 41 ed., USA: The Babcock & Wilcox Company, 2005.
[9] George Waterhouse Consultants Ltd., GWC Coal Handbook, United Kingdom: George Waterhouse Consultants Ltd., 1991.
[10] ASTM International, ASTM D2234 / D2234M-16, Standard Practice for Collection of a Gross Sample of Coal, West Conshohocken, PA: ASTM International, 2016.
[11] ASTM International, ASTM D6609-08(2015), Standard Guide for Part-Stream Sampling of Coal, West Conshohocken, PA,: ASTM International, 2015.
[12] ASTM International, ASTM D4239-17, Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion, West Conshohocken, PA: ASTM International, 2017.
[13] ASTM International, ASTM D3682-13, Standard Test Method for Major and Minor Elements in Combustion Residues from Coal Utilization Processes, West Conshohocken, PA: ASTM International, 2013.
[14] ASTM International, ASTM D1857 / D1857M-17, Standard Test Method for Fusibility of Coal and Coke Ash, West Conshohocken, PA: ASTM International, 2017.