KLASIFIKASI SENTIMENT ANALYSIS PADA KOMENTAR PESERTA DIKLAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR
PDF

Keywords

Sentiment Analysis; Comments; TF-IDF; K-Nearest Neighbor; KNN

Abstract

The process of analyzing and classifying comment data done by reading and sorting one by one negative comments and classifying them one by one using Ms. Excel not effective if the data to be processed in large quantities. Therefore, this study aims to apply sentiment analysis on comment data using K-Nearest Neighbor (KNN) method. The comment data used is the comments of the participants of the training on Udiklat Jakarta filled by each participant who followed the training. Furthermore, the comment data is processed by pre-processing, weighting the word using Term Frequency-Invers Document Frequency, calculating the similarity level between the training data and test data with cosine similarity. The process of applying sentiment analysis is done to determine whether the comment is positive or negative. Furthermore, these comments will be classified into four categories, namely: instructors, materials, facilities and infrastructure. The results of this study resulted in a system that can classify comment data automatically with an accuracy of 94.23%

https://doi.org/10.33322/kilat.v8i1.421
PDF

References

Dave, K. L. (2003). Mining the Peanut Galery: Opinion Extraction and Semantic Classification of Product Reviews. Word Wide Web Conference.

. Feldman, R. d. (2007). The Text Mining Handbook Advanced Approaches in Analyzing Unstructured Data. New York.: Cambridge University Press.

. Liu, B. (2015). Sentiment Analysis and Opinion Mining. Chicago: Morgan & Claypool Publisher.

Luhulima, Yugo Yudasha, Marji, & Lailil Muflikhah. 2015. Sentiment Analysis Pada review Barang Berbahasa Indonesia Dengan Metode K-Nearest Neighbor (K-NN). Universitas Brawijaya Malang.

Putri, P. A., Ridok, A., & Indriati. (n.d.). Implementasi Metode Improved K-Nearest Neighbor Pada Analisis Sentimen Twitter Berbahaasa Indonesia.

Tala, F. Z. 2003. A Study Of Stemming Effects On Information Retrieval in Bahasa Indonesia. The Netherlands: Universiteit van Amsterdam

Weiss, S. M., Indurkhya, N., Zhang, T., & Damerau, F. J. 2005. Text Mining: Predictive Methods fo Analyzing Unstructered Information. New York: Springer.

Siregar, R. R. A., Sinaga, F. A., & Arianto, R. (2017). Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model. Computatio: Journal of Computer Science and Information Systems, 1(2), 171-186.

Downloads

Download data is not yet available.