IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK DI CV CAHAYA SETYA MENGGUNAKAN ALGORITMA FP-GROWTH

Main Article Content

Wahyu Nur Setyo
Sukma Wardhana

Abstract

At this time the growth of data occurs rapidly and rapidly along with the use of computer systems in various transactions. But this increasingly large volume of data has no meaning if it is not processed into a knowledge where this is done by data mining. Association rule or what is known as market based analysis is one type of data mining implementation. This study aims to find patterns of transaction data in the CV Cahaya Setya retail industry by using an Frequent Pattern Growth algorithm or also known as FP-Growth algorithm. FP-Growth aims to find all the set items that can be retrieved (often found) from the transaction database as efficiently as possible. The results of this study show that the pattern on the database of consumer transactions at CV Cahaya Setya retail industry is can be found using the FP-Growth algorithm then implementing it in the application.

Downloads

Download data is not yet available.

Article Details

How to Cite
Setyo, W., & Wardhana, S. (2019). IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK DI CV CAHAYA SETYA MENGGUNAKAN ALGORITMA FP-GROWTH. PETIR: Jurnal Pengkajian Dan Penerapan Teknik Informatika, 12(1), 54-63. https://doi.org/10.33322/petir.v12i1.416
Section
Articles

References

[1] Erwin. 2015. Analisis Market Basket dengan Algoritma Apriori & FP-Growth. Jurnal Generic No.26-30.

[2] Jiawei, H., Kamber, M. (2015). Data Mining Concepts and Techniques, Morgan Kaufmann Publishers.

[3] Fajrin, Alfannisa Annurullah dan Algifanri Maulana. 2018. Penerapan Data Mining Untuk Analisis Pola

Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part

Motor.Jurnal Ilmu Komputer

(KLIK) Teknik Informatika, Universitas Putera Batam Volume 05, No.01 Februari 2018.

[4] Firdaus, Diky. 2017. Penggunaan Data Mining dalam Kegiatan Sistem

Pembelajaran Berbantuan Komputer. Jurnal Format Volume 6 Nomor 2 Tahun 2017

[5] David Samuel, "Penerapan Stuktur FP-Tree dan Algoritma FP-Growth

dalam Optimasi Penentuan FrequentItemset," Institut Teknologi Bandung, Vol. 1, 2008.

[6] Saad, A. dan Alghamdi, A., 2016. Efficient Implementation of FP Growth Algorithm-Data Mining on Medical Data. 11(12), pp.7–16.

[7] Cahyana, Nur Heri et all. 2017, Aplikasi Penerimaan Siswa Baru

Berbasis WEB (SMK Negeri 3 Yogyakarta). TELEMATIKA Vol. 10, No. 1, JULI 2013: 1 – 8.
[8] Sijabat, ALimancon,2015. Penerapan data mining untuk pengolahan data siswa dengan menggunakan metode decision tree. Jurnal Informasi dan teknologi Ilmiah Volume 5 No. 3 ISSN:2339-210x
[9] Ellis, software Engineering, SIGSoft Software Engineering Notes Vo. 32
[10] Web Dalam Perkembangan and Winda Febriani Kusuma 2015. Pengembangan halaman web, menggunakan XML Dalam PErkembangan WEB 2.0, Jurnal Teknik Informatika 6 (2):8

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.