Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS)

Main Article Content

Mochamad Farid Rifai
Hendra Jatnika
Bowval Valentino

Abstract

This research discusses prediction pass rates the certification microsoft office specialist 2013 version (word and excel) aimed to provide information concerning to pass rates and certification give alternative solutions to determine the program certificationi appropriate to chosen before test certification. Naive bayes used for the classification certification graduation where participants know what information pass and did not finish. Naive bayes is a classification with the probability and statistics to predict opportunities in the future based on the Provided before. In this study, system development CRISP-DM to use of the become more ordered and testing done with the BlackBox to test each function is on the application built. From the study, produce values probability of 0.001042 the accuracy of 99 %. These results, proving that naïve bayes method can be used to assist in a prediction graduation rates participants (word and excel), because it produces quite high accuracy. So participants were able to determine the certification program proper chosen before test certification.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] Larose D, T., 2005, Discovering knowledge in data : an introduction to data mining, Jhon Wiley & Sons Inc.
[2] Syarli, & Muin, A. A. (2016). Metode Naive Bayes Untuk Prediksi Kelulusan ( Studi Kasus : Data Mahasiswa Baru Perguruan Tinggi ). Jurnal Ilmiah Ilmu Komputer, 2(1), 1–5.
[3] Budiman, I., Prahasto, T., & Christyono, Y. (2012). Data Clustering Menggunakan Metodologi Crisp-Dm Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma, 2012(Snati), 15–16.
[4] A.S, Rosa dan Shalauhuddin, M. (2014). Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek. Bandung: Informatika Bandung.
[5] Purwanto, S. D., & Santoso, I. B. (2017). Sistem Identifikasi Boraks pada Bakso Daging Sapi Berbasis Android Menggunakan Algoritma Naive Bayes Classifier, 9(1), 33–37.
[6] Nurrohmat, M. A., & Nugroho, Y. S. (2015). Aplikasi Pemrediksi Masa Studi dan Predikat Kelulusan Mahasiswa Informatika Universitas Muhammadiyah Surakarta Menggunakan Metode Naive Bayes. Khazanah Informatika, I(1), 29–34. https://doi.org/10.23917/khif.v1i1.1179
[7] Siregar, R. R. A., Sinaga, F. A., & Arianto, R. (2017). Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model. Computatio: Journal of Computer Science and Information Systems, 1(2), 171-186.
[8] T. Nisa, R. Siregar, And W. Suliyanti, “Estimasi Daya Beban Listrik Pada Gardu Induk Cengkareng Dengan Menggunakan Metode Time Series Model Dekomposisi”, Teknologia, Vol. 1, No. 2, Apr. 2019.
[9] Sangadji, I., & Arvio, Y. (2018, March). Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method. In Journal of Physics: Conference Series (Vol. 974, No. 1, p. 012009). IOP Publishing.
[10] Siregar, R., Siregar, Z., & Arianto, R. (2019). Klasifikasi Sentiment Analysis Pada Komentar Peserta Diklat Menggunakan Metode K-Nearest Neighbor. KILAT, 8(1). https://doi.org/10.33322/kilat.v8i1.421
[11] A. Prianty, R. Siregar, and R. Arianto, “Penanganan Gangguan Listrik Rumah Tangga Menggunakan Algoritma Greedy Untuk Penentuan Jarak Optimal”, Teknologia, vol. 2, no. 1, Aug. 2019.
[12] Siregar Rr, Putri Dr. Metode Support Vector Machine Pada Klasifikasi Audit Energi: Studi Kasus Gedung STT-PLN Jakarta. Jurnal Informatika Dan Komputasi. 2017 Mar 2;8(2):98-104.
[13] R. Jurnal, “Implementasi Logika Fuzzy Untuk Sistem Otomatisasi Pengaturan Pengisian Batere Pembangkit Listrik Tenaga Surya”, Energi, Vol. 9, No. 2, Pp. 111-119, Nov. 2018.