Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia

Main Article Content

Adhib Arfan
Lussiana ETP

Abstract

Banyak investor masih ragu dengan risiko dalam berinvestasi, hal ini disebabkan oleh fluktuasi indeks harga saham dalam waktu singkat. Telah banyak dikembangkan metode untuk memperkirakan harga saham yang akan datang namun masih memiliki keterbatasan di antaranya adalah ketergantungan jangka panjang. Tujuan penelitian yang ingin dicapai adalah menghasilkan model peramalan harga saham yang lebih efektif dan memberikan hasil yang akurat. Tahapan yang dilakukan terdiri dari pengumpulan data, preprocessing data, pembagian data, perancangan LSTM, pelatihan LSTM dan melakukan pengujian. Berdasarkan hasil pengujian, LTSM mampu memprediksi harga saham pada tahun 2017-2019 dengan performa yang baik dan tingkat kesalahan yang relatif kecil. Sedangkan pengujian menggunakan metode Support Vector Regression (SVR), LSTM memiliki nilai loss lebih baik dari algoritma SRV. Rentang data pada LSTM mempengaruhi waktu latih yang digunakan, semakin besar rentang data maka semakin lama waktu latih yang digunakan. Rentang data pada SVR mempengaruhi nilai loss, semakin besar rentang data maka semakin besar nilai loss yang dihasilkan. Dengan demikian dapat disimpulkan bahwa LSTM mampu menanggulangi ketergantungan jangka panjang dan mampu memprediksi harga saham dengan hasil yang akurat.

Downloads

Download data is not yet available.

Article Details

How to Cite
Arfan, A., & ETP, L. (2020). Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia. PETIR: Jurnal Pengkajian Dan Penerapan Teknik Informatika, 13(1), 33 - 43. https://doi.org/10.33322/petir.v13i1.858
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.